COURSE STRUCTURE AND SYLLABUS

[w.e.f. Session 2025-27]

Master of Science (MSC) in Data Science

DEPARTMENT OF MATHEMATICS SARALA BIRLA UNIVERSITY

Birla Knowledge City, Mahilong, Purulia Road Ranchi - 835103 Jharkhand, INDIA 2025-2027

Vision:

To build an egalitarian global society based on national integrity, equality, social justice, secularism, freedom & fraternity, international understanding and scientific approach to the problems of the society, as enshrined in the constitution of India through various modes of teaching-learning process and supported by curricular and co-curricular activities.

Mission:

To develop well-motivated global leaders who will be intellectually competent, morally upright, socially committed, spiritually inspired and 'स्वान्तः सुखाय'. To propagate the philosophy of 'वसुधैवकुदुम्बकम्'.

Vision and Mission of the Department

Vision

To be recognized internationally for quality education and research in Mechanical Engineering with excellence in fields of design, production, and thermal sciences.

Mission

To prepare professionally competent and broadly educated Mechanical Engineers by promoting creativity, developing analytical and research abilities, problem-solving, professional behaviour, adopting new technologies and continuous learning.

Programme Educational Objectives (PEOs)

PEO 1:Equip graduates with a strong foundation in mathematics, statistics, and computer science essential for data analysis.

PEO 2:Prepare graduates to proficiently use programming languages and tools for data manipulation, analysis, and visualization.

PEO 3:Develop graduates' ability to apply analytical and critical thinking skills to solve complex data-driven problems in various domains.

PEO 4:Foster practical experience through projects and internships, ensuring graduates are prepared for careers in data science and analytics.

Programme Outcomes (POs)

After completing the course, the students will be able to:

- **PO1:** Graduates will demonstrate a solid understanding of fundamental mathematical, statistical, and computer science concepts essential for effective data analysis and interpretation.
- **PO2:** Graduates will possess the analytical skills required to solve complex problems using statistical methods, linear algebra, and calculus, supporting data-driven decision-making.
- **PO3:** Graduates will be proficient in programming languages such as Python and R, using them effectively for data manipulation, analysis, modelling, and visualization.
- **PO4:** Graduates will be able to design, implement, and query both SQL and NoSQL databases, ensuring efficient data storage, retrieval, and management.
- **PO5:** Graduates will apply machine learning algorithms including supervised and unsupervised techniques—to real-world datasets for predictive modeling and pattern recognition.
- PO6: Graduates will utilize data mining techniques to uncover meaningful patterns and insights from large and complex datasets.
- **PO 7:** Graduates will perform hypothesis testing, regression analysis, and related statistical methods to inform and support sound decision-making.
- PO 8: Graduates will understand and implement deep learning models such as neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs) for advanced analytics tasks.
- PO 9: Graduates will demonstrate knowledge and practical skills in big data technologies and frameworks (e.g., Hadoop, Spark) for efficient processing and analysis of massive datasets.
- **PO 10:** Graduates will effectively visualize data and communicate insights clearly to stakeholders using appropriate tools and storytelling techniques.
- **PO 11:** Graduates will recognize and uphold ethical standards related to data privacy, security, and fairness, ensuring responsible data science practices.
- **PO 12:** Graduates will engage in continuous learning to stay updated with evolving data science technologies and methodologies, supporting long-term professional development.

Programme Specific Outcomes (PSOs)

- **PSO 1:**Graduates will apply statistical techniques and data mining methods to analyze complex datasets, extract meaningful insights, and support informed decision-making.
- **PSO 2:**Graduates will demonstrate expertise in programming languages such as Python and R, and effectively design, implement, and manage SQL and NoSQL databases for data manipulation, analysis, and storage.
- **PSO 3:**Graduates will implement supervised and unsupervised machine learning algorithms to solve real-world problems and enhance data-driven analytical capabilities.

Sarala Birla University

Breakup of Credits					
Sl. No.	Category	Credits			
1	Discipline Core Courses	59			
2	Elective Courses	8			
3	Skill Enhancement Courses	3			
4	Project/ Internship	20			
- 1	Total Credits:	90			

Definition of Credit	Credit
1 Hr. Lecture (L) Per Week	1 Credit
1 Hr. Tutorial (T) Per Week	1 Credit
1 Hr. Practical (P) Per Week	0.5 Credit
2 Hr. Practical (P) Per Week	1 Credit

Semester	Core Course	Elective	Ability Enhancement	Skill Enhancement	PROJECT	Total Credit Semester-wise
1 st	21	0	2	0	0	23
2^{nd}	18	5	0	0	0	23
3 rd	17	4	0	3	0	24
4 th	0	0	0	0	20	20
Total Credit Course- wise	56	9	2	3	20	90
		. 783	Vicencial	20CP	Total Credit	90

	Discipline Core Courses	L	T	P	С			
Semester-I								
MSDS1IC01	Applied Linear Algebra and Calculus	4	1	0	5			
MSDS1IC02	Probability Concepts and Applications	3	1	0	4			
MSDS1IC03	Python Programming for Data Analytics	3	0	0	3			
MSDS1IC04	Database Management Systems for Data Analytics	3	1	0	4			
MSDS1IENV01	Environment and Climate Change	2	0	0	2			
MSDS1IL01	Python Programming for Data Analytics Lab	0	0	4	2			
MSDS1IL02	R Programming Lab	0	0	4	2			
MSDS1IL03	Database Management Systems for Data Analytics Lab	0	0	2	1			
	Semester-II							
MSDS1IIC05	Statistical Decision Making	3	1	0	4			
MSDS1IIC06	Regression Modelling	3	0	0	3			
MSDS1IIC07	Data Mining Methods and Application	3	0	0	3			
MSDS1IIC08	Machine Learning for Data Science	3	1	0	4			
MSDS1IIE01	Time Series Analysis and Forecasting Techniques	3	1	0	4			
MSDS1IIL04	Statistical Decision-Making Lab	0	0	2	1			
MSDS1IIL05	Regression Modelling Lab	0	0	2	1			
MSDS1IIL06	Data Mining and Machine Learning for Data Science Lab	0	0	4	2			
MSDS1IIL07	Time Series Analysis and Forecasting Techniques Lab	0	0	2	1			
	Semester-III							
MSDS2IIIC09	Deep Learning	3	1	0	4			
MSDS2IIIC10	Big Data Analytics	3	0	0	3			
MSDS2IIIC11	Artificial Intelligence	3	1	0	4			
MSDS2IIIC12	Optimization Techniques	3	0	0	3			
MSDS2IIIE02	Natural Language Processing	3	1	0	4			
MSDS2IIIL08	Deep Learning Lab	0	0	4	2			
MSDS2IIIL09	Big Data Analytics Lab	0	0	2	1			
MSDS2IIIPDP01	Qualitative Skills Practice	2	1	0	3			

Open Elective Courses	CREDIT
Engineering Disciplines Social Sciences	4+4

Skill Enhancement Courses	L	T	P	C
Qualitative Skills Practice	2	0	0	3

Internship and Dissertation	L	T	P	C
Internship/Dissertation/Project	0	0	0	20

SEMESTER-I (1st YEAR)

Master of Science (M.Sc.) in Data Science

Sl.	Cata	Commo Co I	Come T'41		Hours		Cus 34	Marks		
No.	Category	Course Code	Course Title	L	Т	P	Credit	IA	ESE	Total
'	Theory									
1	Discipline Core Course	MSDS1IC01	Applied Linear Algebra and Calculus	4	1	0	5	40	60	100
2	Discipline Core Course	MSDS1IC02	Probability Concepts and Applications	3	1	0	4	40	60	100
3	Discipline Core Course	MSDS1IC03	Python Programming for Data Analytics	3	0	0	3	40	60	100
4	Discipline Core Course	MSDS1IC04	Database Management Systems for Data Analytics	3	1		4	40	60	100
5	Ability Enhancement Course	MSDS1IENV01	Environment and Climate Change	2	0	0	2	40	60	100
			/ "/~~\ (b) K		Tota	l (A)	18	200	300	500
		,7 0	Practical	Ţ		Ò				•
6	Discipline Core Course	MSDS1IL01	Python Programming for Data Analytics Lab	0	0	4	2	30	20	50
7	Discipline Core Course	MSDS1IL02	R Programming Lab	0	9	4	2	30	20	50
8	Discipline Core Course	MSDS1IL03	Database Management Systems for Data Analytics Lab	0	0	2	1	30	20	50
	Total (B)					ıl (B)	5	90	60	150
•	Grand Total (A+B)						23	290	360	650

L-Lecture, T-Tutorial, P-Practical

IA- Internal Assessment, ESE-End Semester Examination

SEMESTER-II (1st YEAR)

		Master	of Science (M.Sc.) in	Dat	a Sci	ence				
Sl.	Cotogowy	Course Code	Course Title		Hours	;	Credit		Marks	
No.	Category	Course Code	L	L	T	P	Crean	IA	ESE	Total
			Theory							
1	Discipline Core Course	MSDS1IIC05	Statistical Decision Making	3	1	0	4	40	60	100
2	Discipline Core Course	MSDS1IIC06	Regression Modelling	3	0	0	3	40	60	100
3	Discipline Core Course	MSDS1IIC07	Data Mining Methods and Application	3	0	0	3	40	60	100
4	Discipline Core Course	MSDS1IIC08	Machine Learning for Data Science	3	21	0	4	40	60	100
5	Discipline Elective Course	MSDS1IIE01	Time Series Analysis and Porecasting Techniques (Elective- 01)	3	2/2	0	4	40	60	100
					Tot	al(A)	18	200	300	500
		æ	Practical	V			<u> </u>			
1	Discipline Core Course	MSDS1IIL04	Statistical Decision-Making Lab	0	0	2	1	30	20	50
2	Discipline Core Course	MSDS1IIL05	Regression Modelling Lab	0	0	2	1	30	20	50
3	Discipline Core Course	MSDS1IIL06	Data Mining and Machine Learning for Data Science Lab	0	0	4	2	30	20	50
	Discipline	9	Time Series Analysis and	1	A	_				

Time Series Analysis and

Forecasting Techniques Lab

0

0

Grand Total (A+B)

2

5

23

Total (B)

30

120

320

20

80

380

50

200

700

L-Lecture, T-Tutorial, P-Practical

Elective

Course

4

IA- Internal Assessment, ESE-End Semester Examination

MSDS1IIL07

SEMESTER-III (2nd YEAR)

Waster of Science (W.Sc.) in Data Science										
Sl.	Catagory	Category Course Code	Course Title		Hours	;	Credit	Marks		
No.	Category	Course Code	Course Title	L	T	P	Credit	IA	ESE	Total
	Theory									
1	Discipline Core Course	MSDS2IIIC09	Deep Learning	3	1	0	4	40	60	100
2	Discipline Core Course	MSDS2IIIC10	Big Data Analytics	3	0	0	3	40	60	100
3	Discipline Core Course	MSDS2IIIC11	Artificial Intelligence	3	1	0	4	40	60	100
4	Discipline Core Course	MSDS2IIIC12	Optimization Techniques	3	0	0	3	40	60	100
5	Discipline Elective Course	MSDS2IIIE02	Natural Language Processing	3	\$ 1 K	0	4	40	60	100
		76	AWA	13	Tota	al(A)	18	200	300	500
		1 12	Practical	1	ש					
1	Discipline Core Course	MSDS2IIIL08	Deep Learning Lab	0	0	4	2	30	20	50
2	Discipline Core Course	MSDS2II <mark>IL</mark> 09	Big Data Analytics Lab	0	0_	2	1	30	20	50
3	Skill Enhancement Courses	MSDS2IIIPDP01	Qualitative Skills Practice	2	(P)	O	3	30	20	50
		9	पत्रप	\sim	Tota	al (B)	6	90	60	150
		As a second	' B/PLALIG	rand	Total (A	A+B)	24	290	360	650

L-Lecture, T-Tutorial, P-Practical

IA- Internal Assessment, ESE-End Semester Examination

SEMESTER-IV (2nd YEAR)

Mast	ter of Science	e (M.Sc.) i	n Data Scienc	e

		TV1430	ci di scicnee (M.Sc.) ili i	Jara	BCICI		1	ı		
Sl.					Hours				Marks	;
No.	Category	Course Code	Course Title	L	T	P	Credit	IA	ESE	Total
			Internship and Disserta	tion						
1	Project	MSDS2IVP01	Internship/Dissertation/Project	0	0	0	20			100
					Grand	Total	20			100

L-Lecture, T-Tutorial, P-Practical

IA- Internal Assessment, ESE-End Semester Examination

SYLLABUS

Course Code		N	ASDS1IC	01								
Category		Discip	line Core	Course								
Course Title	Applied Linear Algebra and Calculus											
Scheme &	L	T	P	Credit	Semester							
Credits	4	1	0	5	I							
Pre-requisites	Elementary Knowledge of Linear Algebra and Calculus											

Applied Linear Algebra and Calculus

60 Lectures

Course Objectives:

- 1. Understanding the matrix algebra and its applications.
- 2. Solving computational problems.
- 3. Provide an introduction to vectors-matrices-and least square methods –all basic topics in linear algebra in the context of data science.
- 4. Application to various real-life data-driven problems.
- 5. Apply calculus and optimization to solving industrial problems

Course Outcomes:

On completion of the course, students will be able to:

- **CO1**: Understand basic matrix properties like rank-determinant-inverse and special types of matrices.
- CO2: Use computational techniques for singular value decomposition and g-inverses.
- CO3: Understand the concepts of vector spaces, subspaces, and linear transformations.
- CO4: Compute inner products on a real vector space and compute angle and orthogonality in inner product spaces.
- CO5: Apply the methods of linear algebra and matrices in several important modern applications of research and industrial problems involving data science.

			Со	urse (Outcor	ne Ma	apping	with	Progra	am Out	come 8	≩ PSO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	ı	ı	ı	1	1	1	1	2	1	3
CO2	3	3	-	2	3	ı	2	ı	1	1	1	1	2	2	3
CO3	3	2	1	2	2	ı	ı	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	ı	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code		I	MSDS1IC()2								
Category		Discip	oline Core	Course								
Course Title	Probability Concepts and Applications											
Scheme &	L	Т	P	Credit	Semester							
Credits	3 1 0 4 I											
Pre-requisites	Elementary Knowledge of Probability											

Probability Concepts and Applications

Lectures: 50

Course Objectives:

- 1. To incorporate the concepts of probability theory and its applications as the core material in building theoretical ideas along with the practical notion.
- 2. To integrate the intrinsic ideas of preliminary and advanced distributions to correlate with real-world scenarios.
- 3. Develop the ability to model real-world scenarios using probability distributions, such as risk analysis, decision-making, and statistical inference
- 4. Teach students how to compute and interpret key statistical measures such as expectation, variance, and covariance for random variables and distributions.
- 5. Provide an understanding of important limit theorems, including the Law of Large Numbers and the Central Limit Theorem, which are fundamental in statistical theory and applications.

Course Outcomes:

On completion of the course, student will be able to:

- CO1: Develop the problem-solving techniques needed to calculate probability and conditional probability.
- CO2: Describe and construct the probability distribution functions and illustrate the mathematical expectation.
- CO3: Demonstrate the various types of generating functions used in statistics.
- **CO4**: Apply the commonly used univariate discrete and continuous probability distributions.
- CO5: Illustrate the sampling distributions and its importance in Inferential statistics.

			Co	urse (Outcor	ne Ma	apping	with	Progra	am Out	come 8	& PSO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	-	-	-	1	1	1	1	2	1	3
CO2	3	3	ı	2	3	ı	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	ı	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	_	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code			MSDS1I	C03	
Category		Disci	pline Cor	e Course	
Course Title	Pytho	on Progra	amming f	or Data A	nalytics
Scheme &	L	T	P	Credit	Semester
Credits	3	0	0	3	I
Pre-requisites	Elen	•	Knowledg rogramn	e about P	ython

Python Programming for Data Analytics

Lectures: 45

Course Objectives:

- 1. To introduce the basic building blocks of algorithmic problem-solving.
- 2. To introduce core programming basics using Python language.
- 3. To introduce the data structures of Python and their applications.
- 4. To introduce the modules for data manipulation and visualization.
- 5. Guide students in applying Python programming to real-world data analytics projects, developing problem-solving skills for handling large datasets, extracting meaningful patterns, and making data-driven decisions.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Classify various algorithmic approaches and categorize the appropriate data representation,

CO2: Build programs using control structures,

CO3: Develop solutions to problems using ordered and un-ordered collection of data types.

CO4: Utilize the in-built functions and modules and develop user defined functions and modules.

CO5: Demonstrate array operations, mathematical analysis and graphical representation of data.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	ı	-		1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	ı	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs-POs/PSOs are Categorized as follows:

Course Code		MS	SDS1IC04										
Category		Disciplin	ne Core C	ourse									
Course Title	Database Management Systems for Data Analytics												
Scheme &	L	T	P	Credit	Semester								
Credits	3	1	0	4	I]							
Pre-requisites	Elementary Knowledge of Database Management												

Database Management Systems for Data Analytics

Lectures: 50

Course Objectives:

- 1. To understand the basic concepts of database, ER Modelling, normalization and query optimization.
- 2. To comprehend the concepts concurrency control, recovery and indexing.
- 3. To explore the concepts of NoSQL and main types of NoSQL databases.
- 4. Connect databases with data analytics platforms for seamless analysis and reporting.
- 5. Focus on data security, integrity, and performance optimization for large datasets.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Describe the concepts of database, construct entity-relationship (ER) model for the real-world problems and transfer data model into database designs.

CO2: Analyze the fundamental concepts of normalization, transaction, concurrency control and recovery mechanisms.

CO3: Demonstrate the basic database storage structure and indexing techniques.

CO4: Organize the detailed architecture and primary benefits using NoSQL Databases.

CO5: Analyze the major types of NoSQL databases

			C	ourse	Outco	me Ma	pping	with I	Progra	m Outo	ome &	PSO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	-	-	39	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	ı	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	ı	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code		MS	DS1IEN	IV01								
Category		Ability Enl	hancem	ent Course								
Course Title	En											
Schem e &	L T P Credit Semester											
Credit s	2											
Pre- requisites	Basic knowledge of Algorithms & Real Analysis											

Environment and Climate Change

Lectures: 30

Course Objectives:

- 1. Understand environment and its various components
- 2. Explore the science of climate change, its causes, and its global impacts on ecosystems and human societies.
- 3. Examine key environmental challenges such as pollution, deforestation, and biodiversity loss.
- 4. Basic knowledge and concept of causes, effect and control of different type of environmental pollution.
- 5. Understand sustainable practices and policies to address environmental challenges and promote long-term ecological balance

Course Outcomes:

On completion of the course, student will be able to:

CO1: Acquire skills to understand environment and its various components, related issues and problems, identifying and solving them.

CO2: Participate and be actively involved at all levels in working towards the benefits of environment.

CO3: Gain knowledge about the conservation of biodiversity and its importance.

CO4: Aware students about problems of environmental pollution, its impact on human and ecosystem and control measures.

CO5: Students will be able to propose and advocate for sustainable practices and policies that promote environmental protection and climate resilience.

				Cour	se Outo	come N	/lappin	g with I	Progran	n Outco	me & PS	5O			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	ı	-	ı	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	1	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	ı	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	1	2	2	-	-	2	2	3

The Mapping Level Contribution between COs-POs/PSOs are Categorized as follows:

Course Code			MSDS1	IL01							
Category	Discipline Core Course										
Course Title	Python 1	Program	ming fo	r Data An	alytics Lab						
Scheme &	L	T	P	Credit	Semester						
Credits	0	0	4	2	I						
Pre-requisites	Solving complex problem through Python										

Python Programming for Data Analytics Lab

Session: 25

Course Objectives:

- 1. Explore problem-solving skills using Python programming and find solutions for real-time problems.
- 2. Acquire object-oriented programming skills in Python.
- 3. Gain experience in creating informative visualizations with libraries like Matplotlib and Seaborn.
- 4. Implement basic statistical methods to analyze datasets and extract insights.
- 5. Apply simple machine learning models using Scikit-learn for predictive analytics tasks.

Course Outcomes:

On completion of the course, student will be able to:

- **CO1**: Understand and comprehend the basic programming constructs of Python programming.
- CO2: Implement control statements for altering the sequential execution of programs in solving problems.
- CO3: Solve real-time problems using modular programming concepts.
- CO4: Develop programs for statistical processing of data using NumPy, Matplotlib, Scipy, and Pandas.
- CO5: Students will be able to implement simple machine learning models to solve real-world predictive analytics problems.

				Cour	se Outo	come N	/lappin	g with I	Progran	n Outco	me & PS	50			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
CO1	3	2	-	2	2	-	-	-	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	_	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code			MSDS	51IL02						
Category]	Discipline (Core Course						
Course Title			R Progran	nming Lab						
Scheme &	L	T	P	Credit	Semester					
Credits	0 0 4 2 I									
Pre-requisites	Solving Problems Through R Programming									

R Programming Lab

Session: 25

Course Objectives:

- 1. The main objective of the course is to explore the power of R, statistical computing software for performing various tasks related to Data Science.
- 2.Master techniques for cleaning, transforming, and manipulating datasets using R packages like dplyr and tidyr.
- 3. Apply statistical methods and tests to analyze data and interpret results in R.
- 4.Gain proficiency in creating advanced visualizations using ggplot2 and other R visualization tools.
- 5.Implement basic machine learning models in R, focusing on data analysis and predictive modeling.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Perform calculations related to linear algebra.

CO2: Performing statistical calculations.

CO3: Creating charts/diagrams to visualize data.

CO4: Analyzing data frames using dplyr

CO5: Effectively use gg plot package.

			Со	urse (Outcor	ne Ma	apping	with	Progra	am Out	come 8	& PSO			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1	3	2	-	2	2	ı	-	-	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code			MSDS	1IL03						
Category	Discipline Core Course									
Course Title	Data	base Manag	gement Syste	ms for Data A	Analytics Lab					
Scheme &	L	T	P	Credit	Semester					
Credits	0 0 2 1 I									
Pre-requisites	Elementary Knowledge About Database Management									

Database Management Systems for Data Analytics Lab

Session: 15

Course Objectives:

- 1. To understand the concepts of SQL commands.
- 2. To comprehend the concepts of PL/SQL.
- 3. To explore the concepts of NoSQL using MongoDB.
- 4. Train students in designing efficient database models for handling large datasets in analytics applications.
- 5. Equip students with skills to implement security measures and optimize database performance for large-scale data analytics tasks.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Perform SQL and PL/ SQL queries.

CO2: Implement the MongoDB methods, insert, update, delete operations in a NoSQL database.

CO3: Students will learn to integrate databases with data analytics tools and perform data analysis directly from the database.

CO4: Students will understand and apply database optimization techniques for improved query performance and scalability.

CO5: Students will learn to implement database security measures, ensuring data integrity, privacy, and security in data analytics applications

			Со	urse (Dutcor	ne Ma	apping	with	Progra	am Out	come 8	& PSO			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
CO1	3	2	-	2	2	ı	-	-	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code]	MSDS1II	IC05							
Category	Discipline Core Course										
Course Title		Statisti	cal Decis	ion Makin	g						
Scheme &	L	T	P	Credit	Semester						
Credits	3	1	0	4	II						
Pre-requisites	Basic knowledge of probability and Statistics										

Statistical Decision Making

Lectures: 50

Course Objectives:

- 1. Develop a strong foundation in probability theory, random variables, and probability distributions for statistical analysis
- 2. Understand data classification, representation, and statistical measures such as central tendency, dispersion, skewness, and kurtosis
- 3. Learn sampling techniques, estimation methods, and hypothesis testing (Z-test, t-test, Chi-Square test, F-test, and ANOVA) for data-driven decision-making.
- 4. Explore regression and correlation techniques, including linear regression, ridge regression, LASSO, and logistic regression, for predictive modelling
- 5. Apply statistical and machine learning techniques to solve real-world data science problems effectively.

Course Outcomes:

On completion of the course, student will be able to:

- **CO1**: Learn the fundamentals of probability theory and different probability distributions.
- CO2: Implement various sampling, estimation, and testing methods on data from different population sections.
- CO3: Analyze hypothesis testing procedures to draw conclusions about populations based on sample data.
- **CO4**: Use estimation techniques to make inferences about population parameters from sample data.
- **CO5**: Construct and perform correlation and regression models to analyze relationships between variables.

				Cou	rse Out	come N	/Jappin _{	g with F	rogran	n Outcor	ne & PSC)			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
CO1	3	2	-	2	2	ı	-	-	1	1	1	1	2	1	3
CO2	3 3 - 2 3 - 2 - 1 1 1 1 2 2 3														
CO3	3	2	1	2	2	ı	-	1	1	-	1	ı	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	ı	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs-POs/PSOs are Categorized as follows:

Course Code		ľ	MSDS1II	C06							
Category		Discipline Core Course									
Course Title		Regr	ession Mo	odelling							
Scheme &	L	T	P	Credit	Semester						
Credits	3	3 0 0 3 II									
Pre-requisites	Basic data science										

Regression Modelling

Lectures: 45

Course Objectives:

- 1. Gain a solid grasp of the foundational concepts and types of regression models (such as linear, logistic, and polynomial regression) and their applications in predicting outcomes based on independent variables.
- 2. Learn how regression models are applied across different fields, including economics, healthcare, finance, marketing, and social sciences, to make data-driven predictions and decisions.
- 3. Understand the importance of testing key assumptions in regression models, such as linearity, independence, homoscedasticity, and normality, to ensure valid results.
- 4. Master the step-by-step process of building regression models, from data collection and preprocessing to model selection, training, and evaluation.
- 5. Develop the skills to interpret regression model outputs, such as coefficients, p-values, and R-squared values, to draw meaningful conclusions and make informed predictions.

Module I: Simple Linear Regression

(Lecture 10)

Simple Regression Models with One Independent Variable - Assumptions, Estimation of Parameters - Standard Error of Estimator - Testing the Significance of Regression Coefficients - Standard Error of Prediction.

Module II: Multiple Linear Regression

(Lecture 10)

Multiple Regression: Standard Gauss Markov Setup, Least Square (LS) Estimation, Error and Estimation Spaces - Variance - Covariance of LS Estimators - Estimation of Error Variance - Case with Correlated Observations - LS Estimation with Restriction on Parameters - Multicollinearity.

Module III: Diagnostics

(Lecture 10)

Diagnostic Checks and Correction: Graphical Techniques, Tests for Normality, Uncorrelatedness, Homoscedasticity, Lack of Fit - Polynomial Regression - Transformations on Y or X - Inverse Regression.

Module IV: Data Cleaning and Preparation

(Lecture 10)

Data Cleaning and Preparation - Non-Linear Regression: Linearization Transforms, Advantages, Limitations, Non-Linear Least Squares, Parameter Estimation in a Non-Linear Systems.

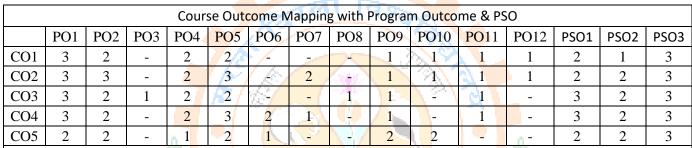
Module V: Generalized Linear Models

(Lecture 05)

Generalized Linear Models: Logistic Regression, Poisson Regression.

Course Outcomes:

On completion of the course, student will be able to:


CO1: Understand the fundamentals of simple linear regression, focusing on modeling the relationship between a single independent variable and a dependent variable.

CO2: Apply tests to check for normality (e.g., Shapiro-Wilk test) and homoscedasticity (e.g., Breusch-Pagan test) to ensure the validity of regression results.

CO3: Learn how to extend simple linear regression to multiple linear regression by incorporating multiple independent variables to predict a dependent variable.

CO4: Explore non-linear regression techniques for modelling relationships where data doesn't fit a straight line, using models like polynomial regression or logarithmic regression.

CO5: Analyze real-world data using both linear and non-linear regression models, evaluating model fit and assumptions to draw reliable conclusions.

क्षेत्र क्षेत्र

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code		ľ	MSDS1II	C07						
Category	Discipline Core Course									
Course Title	Data Mining Methods and Application									
Scheme &	L	T	P	Credit	Semester					
Credits	3 0 0 3 II									
Pre-requisites	Basics of Database Management System									

Data Mining Methods and Application

Lectures: 45

Course Objectives:

- 1. Understand the Fundamentals of Data Mining
- 2. Master Data Preprocessing Techniques
- 3. Explore Data Warehousing and OLAP
- 4. Develop Skills in Frequent Pattern and Association Mining
- 5. Apply Data Mining in Real-World Scenarios

Course Outcomes:

On completion of the course, student will be able to:

- CO1: Understand techniques for efficiently storing, mining, and retrieving data, ensuring scalability and accessibility.
- CO2: Apply data processing methods like cleaning, transformation, and normalization to enhance system performance and ensure accuracy.
- CO3: Evaluate various data patterns to identify correlations and associations between data items for deeper insights.
- **CO4:** Develop data-mining solutions tailored to specific applications, such as business, healthcare, or marketing, to solve real-world problems.
- **CO5:** Focus on optimizing mining algorithms and storage techniques to achieve fast and efficient data processing and retrieval.

				Cour	se Outo	come N	/lappin	g with I	Progran	n Outco	me & PS	50			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
CO1	3	2	-	2	2	-	-	-	1	1	1	1	2	1	3
CO2	3	3	-	2	3	ı	2	ı	1	1	1	1	2	2	3
CO3	3	2	1	2	2	ı	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	ı	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	1	2	2	_	_	2	2	3

The Mapping Level Contribution between COs-POs/PSOs are Categorized as follows:

Course Code		ľ	MSDS1II	C08						
Category	Discipline Core Course									
Course Title	Machine Learning for Data Science									
Scheme &	L	T	P	Credit	Semester					
Credits	3 1 0 4 II									
Pre-requisites	Basic data science									

Machine Learning for Data Science

Lectures: 50

Course Objectives:

- 1. Understand Machine Learning Fundamentals
- 2. Apply Clustering and Classification Techniques.
- 3. Develop and Optimize Machine Learning Models.
- 4. Design and Analyze Experiments.
- 5. Implement Generative and Probabilistic Models

Course Outcomes:

On completion of the course, student will be able to:

CO1: Learn various machine learning methods, including supervised, unsupervised, and reinforcement learning techniques for different types of problems.

CO2: Gain a deep understanding of popular machine learning models, such as decision trees, support vector machines, and neural networks.

CO3: Analyze different techniques for classifying data, such as logistic regression, k-nearest neighbors, and random forests, to categorize data effectively.

CO4: Implement machine learning algorithms to predict outcomes based on data, using tools like Python or R for model development.

CO5: Apply machine learning algorithms to predict results of experiments, improving decision-making and outcomes in real-world scenarios.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1															
CO2															
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4															
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code		Ι	MSDS1II	E01							
Category	Discipline Core Course										
Course Title	Tiı	me series ar	d Foreca	sting Techn	iques						
Scheme &	L	T	P	Credit	Semester						
Credits	3 1 0 4 II										
Pre-requisites	Basic data science										

Time Series Analysis and Forecasting Techniques

Lectures: 50

Course Objectives:

- 1. Introduce the foundational concepts and techniques of algorithmic problem-solving.
- 2. Provide a solid foundation in core programming principles using Python language.
- 3. Introduce essential Python data structures and demonstrate their practical applications.
- 4. Teach the use of Python modules for efficient data manipulation and processing.
- 5. Equip students with skills to use Python libraries for effective data visualization and analysis.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Recognize and differentiate between linear, quadratic, Gompertz, and logistic models in various applications.

CO2: Describe and apply models that account for seasonal variations in data.

CO3: Understand and explain the methods used to study cyclic components in time series data.

CO4: Select the appropriate model based on the data type and context (e.g., linear vs. logistic).

CO5: Apply the identified models to analyze and interpret real-world data effectively.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3													PSO3	
CO1	CO1 3 2 - 2 2 - - 1 1 1 1 2 1 3														
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4															
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code		1	MSDS1II	L 04						
Category	Discipline Core Course									
Course Title	Statistical Decision-Making Lab									
Scheme & Credits	L	T	P	Credit	Semester					
Scheme & Creats	0 0 2 1 II									
Pre-requisites	Basic concepts of programming									

Statistical Decision-Making Lab

Session-15

Course Objectives:

- 1. Understand the key types of questions statistical methods address, such as comparisons, relationships, and predictions for informed decision-making.
- 2. Apply statistical methods to perform hypothesis testing and make inferences based on sample data.
- 3. Interpret statistical results effectively to directly answer the research or business question at hand.
- 4. Clearly communicate the purpose, findings, and implications of statistical analyses to stakeholders.
- 5. Use statistical methods to support decision-making by providing evidence-based conclusions and actionable insights.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Apply hypothesis tests to common models (e.g., Normal distribution), including the construction of null and alternative hypotheses, test statistics, rejection regions, significance levels, power curves, and p-values.

CO2: Evaluate and perform hypothesis testing using parametric tests (Z, t, F, Chi-square), interpreting the results to make data-driven conclusions.

CO3: Understand and apply non-parametric tests when data doesn't meet parametric assumptions, interpreting results accordingly.

CO4: Develop and calculate test statistics for different hypothesis tests, ensuring accuracy in assessing the relationship between sample data and population parameters.

CO5: Interpret the outcomes of both parametric and non-parametric tests to draw meaningful conclusions and guide decision-making based on statistical evidence.

				Cou	se Out	come N	/lapping	g with F	rogram	n Outcor	ne & PSC)			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														PSO3
CO1															
CO2															
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	CO4 3 2 - 2 3 2 1 - 1 - 1 - 3 2 3														
CO5	2	2	-	1	2	1	1	-	2	2	_	_	2	2	3

The Mapping Level Contribution between COs-POs/PSOs are Categorized as follows:

Course Code		N	MSDS1II	L05						
Category		Discip	oline Cor	e Course						
Course Title	Regression Modelling Lab									
Scheme & Credits	L	T	P	Credit	Semester					
seneme a creates	0 0 2 1 II									
Pre-requisites		Basic concepts of programming								

Regression Modelling Lab

Session-15

Course Objectives:

- 1. Understand the fundamentals of building regression and time series models to analyse relationships between variables and forecast future trends.
- 2. Apply regression and time series models in fields like economics, finance, healthcare, and marketing for predictive analysis and decision-making.
- 3. Learn the methodologies to test assumptions in regression (linearity, independence, homoscedasticity) and time series models (stationarity, autocorrelation).
- 4. Gain practical knowledge on selecting, developing, and refining regression and time series models for real-world data analysis.
- 5. Evaluate model performance using diagnostic tests, ensuring the assumptions are met and that the models provide reliable predictions and insights.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Understand the concept and application of simple linear regression for modeling the relationship between one independent variable and a dependent variable.

CO2: Apply tests to check assumptions like normality (e.g., Shapiro-Wilk test) and homoscedasticity (e.g., Breusch-Pagan test) to validate the model.

CO3: Extend simple linear regression to multiple linear regression, incorporating multiple independent variables to predict a dependent variable.

CO4: Analyze and apply non-linear regression models when the relationship between variables is not linear, using techniques like polynomial or logistic regression.

CO5: Use both linear and non-linear regression models to analyze real-world data, ensuring accurate model fit and interpretation.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														PSO3
CO1															
CO2															
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code]	MSDS1II	L06					
Category		Disci	pline Cor	e Course					
Course Title	Data Minin	g and Mad	chine Lear	ning for Data	Science Lab				
Scheme & Credits	L	T	P	Credit	Semester				
Scheme & Creats	0	0	4	2	II				
Pre-requisites	Basic co	Basic concepts of programming and data mining							

Data Mining and Machine Learning for Data Science Lab

Session-30

Course Objectives:

- 1. Implement the Locally Weighted Regression (LWR) algorithm on a suitable dataset and create visual graphs of the fitted model.
- 2. Implement linear regression in Python for data analysis and plot graphs to visualize the model's performance.
- 3. Design and write a Python program to construct Logistic Regression models for classification.
- 4. Implement Support Vector Machine (SVM) for classifying data based on given features.
- 5. Build and apply an ID3 decision tree using a dataset to classify and predict new samples.

Course Outcomes:

On completion of the course, student will be able to:

- CO1: Develop the ability to implement and apply Locally Weighted Regression (LWR) for fitting data and drawing graphical representations.
- CO2: Gain expertise in implementing linear regression using Python and visualizing results with appropriate datasets.
- CO3: Learn to construct and execute a Logistic Regression algorithm to classify data into distinct categories.
- **CO4:** Acquire skills to implement Support Vector Machines (SVM) for classification tasks.
- CO5: Demonstrate the working of the ID3 decision tree algorithm for classification and sample prediction.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														PSO3
CO1															
CO2															
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	CO4 3 2 - 2 3 2 1 - 1 - 1 - 3 2 3												3		
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs-POs/PSOs are Categorized as follows:

Course Code		N	ASDS1II	L07						
Category		Discipli	ne Electi	ve Course						
Course Title	Time Series Analysis and Farecasting Techniques Lab									
Scheme & Credits	L	T	P	Credit	Semester					
Scheme & Creates	0 0 2 1 II									
Pre-requisites	NA									

Time Series Analysis and Forecasting TechniquesLab

Session-30

Course Objectives:

- 1. Learn the process of building time series models for forecasting and analysis.
- 2. Explore the use of time series models across various domains and industries.
- 3. Understand the methodology to test assumptions and conditions involved in time series modeling.
- 4. Gain skills in validating and evaluating the effectiveness of time series models.
- 5. Apply time series techniques to real-world datasets and scenarios in the laboratory setting.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Apply suitable time series forecasting methods to solve real-world problems.

CO: Choose the most appropriate forecasting model based on the characteristics of the data.

CO3: Analyze and evaluate the performance of different time series forecasting techniques.

CO4: Test and verify the assumptions underlying time series models to ensure their validity.

CO5: Assess and improve the accuracy of time series forecasts through model validation and refinement.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
CO1	3	2	-	2	2	-	-	-	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs-POs/PSOs are Categorized as follows:

Course Code			N	ASDS2III	C09								
Category			Discij	oline Core	e Course								
Course Title		Deep Learning											
Scheme &		L	T	P	Credit	Semester							
Credits		3 1 0 4 III											
Pre-requisites	Basic data science												

Deep Learning

Lectures: 50

Course Objectives:

- 1. To introduce the fundamentals of neural networks and types of neural networks.
- 2. To introduce Recurrent Neural Networks, Convolutional Neural Networks and its variants.
- 3. To develop and train deep neural networks.
- 4. To introduce complex learning models and deep learning models.
- 5. To introduce the internal structure of LSTM and GRU and the differences between them.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Understand the fundamentals of deep learning and build deep learning models.

CO2: Apply the most appropriate deep learning method in any given situation.

CO3: Analyse neural network models in data-intensive real-time problems.

CO4: Create efficient generative models.

CO5: Learn and apply convolutional and recurrent neural network techniques.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	-	-	91	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code		N	ASDS2III	C10					
Category		Discipline Core Course							
Course Title		Big	Data Ana	alytics					
Scheme &	L	T	P	Credit	Semester				
Credits	3 0 0 3 III								
Pre-requisites	NA								

Big Data Analytics

Lectures: 45

Course Objectives:

- 1. To have knowledge on accessing, storing and manipulating the huge data from different resources.
- 2. To learn map, reduce analytics using Hadoop and related tools.
- 3. To work with map, reduce applications
- 4. To understand the working environment of Pig and Hive for processing the structured and unstructured data.
- 5. To understand the usage of Hadoop-related tools for Big Data Analytics

Course Outcomes:

On completion of the course, student will be able to:

CO1: Describe big data and use cases from selected business domains.

CO2: Install, configure, and run Hadoop and HDFS...

CO3: Perform map-reduce analytics using Hadoop.

CO4: Demonstrate the Pig architecture and evaluation of pig scripts

CO5: Use Hadoop-related tools such as HBase, Cassandra, Pig, and Hive for big data analytics.

				Cou	se Out	come N	/lapping	g with P	rogran	n Outcon	ne & PSC)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	-	ı	1	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code		N	ASDS2III	C11						
Category		Discij	oline Cor	e Course						
Course Title		Arti	ficial Inte	lligence						
Scheme &	L	T	P	Credit	Semester					
Credits	3 1 0 4 III									
Pre-requisites	Basic data science									

Artificial Intelligence

Lectures: 50

Course Objectives:

- 1. Gain a foundational understanding of core artificial intelligence principles and approaches.
- 2. Develop knowledge of key AI components such as intelligent agents, search algorithms, knowledge representation, inference, logic, and learning.
- 3. Learn how AI techniques are applied in real-world systems, including expert systems, intelligent agents, and machine learning models.
- 4. Understand the working mechanisms of artificial neural networks and other machine learning models.
- 5. Demonstrate the practical implementation and effectiveness of AI methods across different domains.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Gain knowledge of artificial intelligence principles and its foundations, representation and learning.

CO2: Illustrate the construction of learning and expert system.

CO3: Formalize a given problem in the language/framework of different AI methods.

CO4: Apply different search techniques for solving real world complex problems and select the most appropriate solution by comparative evaluation.

CO5: Attain the capability to represent various real life problem domains using logic based techniques and use this to perform inference or planning.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	ı	ı	-	1	1	1	1	2	1	3
CO2	3	3	-	2	3	ı	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	ı	ı	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs-POs/PSOs are Categorized as follows:

Course Code		N	ASDS2III	C12						
Category	Discipline Core Course									
Course Title		Optim	ization Te	echniques						
Scheme &	L	T	P	Credit	Semester					
Credits	3 0 0 3 III									
Pre-requisites	NA									

Optimization Techniques

Lectures: 45

Course Objectives:

- 1. To familiarize the students with some basic concepts of optimization techniques and approaches.
- 2. To formulate a real-world problem as a mathematical programming model.
- 3. To develop the model formulation and applications are used in solving decision problems.
- 4. To introduce complex learning models and deep learning models.
- 5. To solve specialized linear programming problems like the transportation and assignment Problems.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Understand the operations research techniques like linear programming problem.

CO2: Apply the linear programming problem in industrial optimization problems.

CO3: Solve allocation problems using various operations research methods.

CO4: Understand the characteristics of different types of decision-making environment and the appropriate decision-making approaches and tools to be used in each type.

CO5: Recognize competitive forces in the marketplace and develop appropriate reactions based on existing constraints and resources.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	-	-	-	1	1	1	1	2	1	1
CO2	3	3	-	2	3	ı	2	-	1	1	1	1	2	2	1
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	1
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	1
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	1

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code		N	ASDS2III	E02							
Category		Elective Course									
Course Title		Natural 1	Language	Processing							
Scheme &	L	T	P	Credit	Semester						
Credits	3	3 1 0 4 III									
Pre-requisites	NA										

Natural Language Processing

Lectures: 50

Course Objectives:

- 1. Introduce core concepts of NLP, focusing on morphology and corpus analysis.
- 2. Explore and interpret traditional and statistical NLP models for sentence classification.
- 3. Understand algorithms for morphology, syntax, semantics, and pragmatics.
- 4. Apply NLP for efficient information retrieval from text.
- 5. Learn the use of NLP techniques in machine translation applications.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Understand the core concepts of natural language processing.

CO2: Learn text pre-processing techniques and work with corpora.

CO3: Analyze words and perform Part-of-Speech tagging.

CO4: Distinguish between syntactic correctness in natural language.

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

CO5: Evaluate the semantic correctness of natural language.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	-	-	-	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

Course Code			MSDS2I	IIL08				
Category	Discipline Core Course							
Course Title		De	ep Leari	ning Lab				
Scheme &	L	T	P	Credit	Semester			
Credits	0 0 4 2 III							
Pre-requisites	NA							

Deep Learning Lab

Session: 30

Course Objectives:

- 1. Enable students to gain experimental knowledge of implementing neural network algorithms using Python programming.
- 2. Equip students with the skills to classify images using deep learning algorithms.
- 3. Teach students to implement various deep learning networks such as Adaline and Madaline.
- 4. Develop hands-on experience with designing and training neural networks for different tasks.
- 5. Provide an in-depth understanding of how deep learning algorithms work and how to apply them effectively in real-world problems.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Do Feature Extraction from Image and Video Data

CO2: Implement Image segmentation and Instance segmentation in Images.

CO3: Implement image recognition and image classification using a pretrained network.

CO4: Implement Analysis on Traffic Information Dataset

CO5: Do classification and feature extraction using auto encoders.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	-	-	ı	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	ı	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs-POs/PSOs are Categorized as follows:

Course Code		MSDS2IIIL09									
Category			Disci	ipline Co	re Course	!					
Course Title		Big Data Analytics Lab									
Scheme &		L	T	P	Credit	Semester					
Credits		0	0	2	1	III					
Pre-requisites	NA										

Big Data Analytics Lab

Session: 15

Course Objectives:

- 1. To provide grounding in big data technology.
- 2. To learn map, reduce analytics using Hadoop / Spark and related tools.
- 3. To work with map, reduce applications.
- 4. To understand the working environment of Pig and Hive for processing the structured and unstructured data.
- 5. To understand the usage of Hadoop / Spark related tools for Big Data Analytics.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Analyze the Big Data framework like Hadoop to efficiently store and process

CO2: Big Data to generate analytics.

CO3: Design of Algorithms to solve Data Intensive Problems using Map Reduce Paradigm.

CO4: Design and Implementation of Big Data Analytics using pig and spark to solve data intensive problems and to generate analytics.

CO5: Implement Big Data Activities using Hive.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	2	-	-	-	1	1	1	1	2	1	3
CO2	3	3	-	2	3	-	2	-	1	1	1	1	2	2	3
CO3	3	2	1	2	2	-	-	1	1	-	1	-	3	2	3
CO4	3	2	-	2	3	2	1	-	1	-	1	-	3	2	3
CO5	2	2	-	1	2	1	-	-	2	2	-	-	2	2	3

The Mapping Level Contribution between COs- POs/PSOs are Categorized as follows:

Course Code	MSDS2IIIPDP01											
Category												
Course Title			Qualit									
Scheme &		L	T	P	Credit	Semester						
Credits		2	1	0	3	III						
Pre-requisites												

Qualitative Skills Practice

Session: 30

Course Objectives:

- 1. Enable students to enhance their analytical and logical reasoning skills for solving statement-assumptions, puzzle tests, and syllogisms.
- 2. Equip students with strategies to efficiently tackle complex reasoning problems like clocks, calendars, series, and seating arrangements.
- 3. Teach students to interpret data and analyze logical sequences, classification problems, and coding-decoding exercises.
- 4. Prepare students to apply reasoning skills in real-world scenarios such as eligibility tests, blood relationships, and logical sequence of words.
- 5. To build confidence in applying reasoning skills under time constraints, preparing students for competitive exams and professional assessments.

Course Outcomes:

On completion of the course, student will be able to:

CO1: Demonstrate proficiency in solving reasoning problems related to statements, assumptions, conclusions, puzzle tests, and eligibility tests.

CO2: Analyze and solve problems involving clocks, calendars, and ranking analogies with improved logical data interpretation.

CO3: Effectively handle number series, coding-decoding exercises, and seating arrangements, showcasing data interpretation skills.

CO4: Confidently solve real-world reasoning problems, including blood relationships, direction and distance tests, and logical word sequences, ready for competitive exams and professional challenges.

CO5. Apply structured reasoning techniques and critical thinking strategies to make informed decisions and solve complex problems under time constraints.

	Course Outcome Mapping with Program Outcome & PSO														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	1	-	-	-	-	-	1	2	2	1	1
CO2	2	2	1	1	1	-	-	-	-	-	1	2	2	1	1
CO3	2	2	1	1	1	-	-	-	-	-	1	2	2	1	1
CO4	2	2	1	1	1	-	-	-	-	1	2	2	2	1	1
CO5	2	2	1	1	1	-	-	-	1	1	2	3	2	1	2

The Mapping Level Contribution between COs-POs/PSOs are categorized as follows:

Course Code			MSDS2IV	/P01						
Category			Projec	et .						
Course Title		Interns	hip/Dissert	ation/Project						
Scheme &	L	T	P	Credit	Semester					
Credits	0	0	0	20	IV					
Pre-requisites		Research Methodology								

Internship/Dissertation/Project

Course Objectives:

- 1. Develop Research Skills: To equip students with the ability to conduct independent research by formulating research questions, designing experiments, and analysing data.
- 2. Enhance Technical Writing: To improve students' proficiency in technical writing, enabling them to produce well-structured and coherent research documents.
- 3. Foster Critical Thinking: To cultivate students' critical thinking abilities, allowing them to evaluate existing literature, identify research gaps, and propose innovative solutions.
- 4. Promote Professional Presentation: To enhance students' presentation skills, ensuring they can effectively communicate their research findings to both technical and non-technical audiences.
- 5. To encourage ethical research practices, time management, and the ability to adapt methodologies in response to challenges during the research process.

Course Outcomes:

On completion of the course, student will be able to:

- CO1. Independent Research Competence: Students will demonstrate the ability to independently conduct comprehensive research projects, including the formulation of research questions, data collection, and data analysis.
- **CO2**. Proficient Technical Documentation: Students will produce detailed and well-structured research reports or dissertations that effectively communicate their research processes and findings.
- **CO3**. Analytical and Critical Thinking: Students will exhibit strong analytical and critical thinking skills by evaluating literature, synthesizing information, and drawing insightful conclusions.
- **CO4**. Effective Communication and Presentation: Students will present their research findings clearly and professionally in seminars and defences, demonstrating confidence and mastery of their subject matter.
- **CO5.** Uphold academic integrity, manage research timelines responsibly, and demonstrate the ability to adapt research methods in response to feedback and challenges during the dissertation process

	Course Outcome Mapping with Program Outcome & PSO														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	1	-	1	3	2	2	3	2	2	3
CO2	2	2	1	1	1	1	-	-	2	2	2	3	2	2	3
CO3	2	2	1	2	1	1	-	-	2	1	2	3	2	2	3
CO4	1	1	1	1	-	-	-	-	2	2	3	3	1	1	2
CO5	1	1	1	1	-	1	-	-	3	3	2	3	1	1	3

The Mapping Level Contribution between COs-POs/PSOs are Categorized as follows: